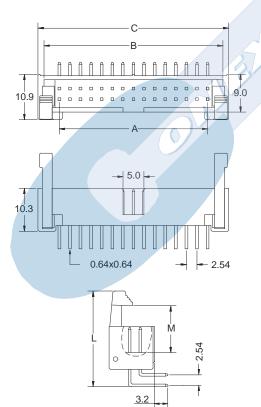
# **DUAL ROW SIDE ENTRY SHRUNK HEADER**

## **5394 SERIES.** 2.54 x 2.54 mm. (0.100 x 0.100") pitch. Eject latch levers.


#### **General Features**

- Available in 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 30, 34, 40, 44, 50, 60 and 64 circuits
- Mates with IDC connectors 5435 series
- Gold plated 0.64 mm. square pin
- Fully shrouded with polarized slot
- Long and short latch levers on the side

#### Materials

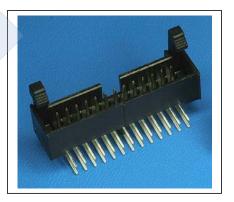
- Insulator: PBT UL 94V-0
- •
- Terminal: Brass
- Operating temperature. -25°C to +85°C
- RoHS compliant

#### **Dimension Information**



| $2.54 \xrightarrow{-1} \stackrel{-1}{\sim} \stackrel{-2.54}{} \\ \xrightarrow{-0} \stackrel{-0}{} \stackrel{-0}{} \stackrel{-2.54}{} \\ \xrightarrow{-0} \stackrel{-0}{} \stackrel{-0}{$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RECOMMENDED HOLE PATTERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| DIMENSIONS  | L     | М     |
|-------------|-------|-------|
| Long latch  | 26.30 | 14.60 |
| Short latch | 22.90 | 10.60 |


### **Electrical Features**

- Voltage rating: < 250V
- Current rating: < 2 A
- Contact resistance: < 30 mΩ</li>
- Dielectric withstanding Voltage: 500 V AC/minute
- Insulation resistance: >1000 MΩ

#### **Mechanical Features**

20

- Pin retention force to insulator: > 1.20 Kgf
- Durability: 50 Cycles



| Ordering Info                                         | ormatic    | on:                       |          |
|-------------------------------------------------------|------------|---------------------------|----------|
| <u>5394</u> -                                         | <u>T</u> - | <u>XX</u> -               | <u>S</u> |
| 1                                                     | 2          | 3                         | 4        |
| 1. Connector S                                        | Series     |                           |          |
| 2. (T) Contact                                        | Plating    |                           |          |
| • T = 2. Tin pl                                       | ated       |                           |          |
| <ul> <li>T = 3. Gold</li> <li>Reco</li> </ul>         |            | ver nickel<br>Ided Finish | ı        |
| <ul> <li>T = 5. 15µ"</li> <li>T = 6. 30µ"</li> </ul>  | •          |                           |          |
| 3. (XX) Numbe                                         | er of circ | cuits                     |          |
| <ul><li>Available i</li><li>4. (S) Latch Ty</li></ul> |            | ough 64 ci                | rcuits   |
| <ul> <li>S = 1. Short</li> <li>S = 2. Long</li> </ul> |            |                           |          |

Dimensions: (In mm.)

A = 2.54 
$$\left(\frac{XX}{2} - 1\right)$$
 B = 2.54  $\left(\frac{XX}{2}\right) + 4.80$  C = 2.54  $\left(\frac{XX}{2}\right) + 7.66$ 

(XX) = Number of circuits