S/ ROW DUAL BODY VERTICAL PIN HEADER

2036 SERIES. 2.00 mm ($0.079^{")}$) pitch.

General Features

- Available in 2 through 40 circuits
- Mates with sockets 2.00 mm.pitch 2041, 2047, 2054, 2166 2149 and 2018 series
- 0.50 mm . square pin with different plating
- Available with different pin length. Contact sales office

Materials

- Insulator: Polyester nylon 6T UL 94 V-0
- Contact: brass
- Operating temperature: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- RoHS Compliant

Dimension Information

RECOMMENDED HOLE PATTERN

Electrical Features

- Voltage rating: < 125V
- Current rating: < 2 A
- Contact resistance: < $20 \mathrm{~m} \Omega$
- Dielectric withstanding voltage: 500 V AC/minute
- Insulation resistance: $>1000 \mathrm{M} \Omega$
- Capacitance: <2 pF at 1 KHz .

Mechanical Features

- Pin retention force to insulator: $>0.30 \mathrm{Kgf}$
- Durability: 50 cycles

Ordering Information:

1. Connector Series
2. (T) Contact Plating

- $\mathrm{T}=$ 2. Tin plated
- T=3. Gold flash over nickel

Recommended Finish

- $T=5.15 \mu$ " gold over nickel
- $\mathrm{T}=6.30 \mu$ " gold over nickel
- $T=13$. Sel. gold flash over nickel overall
- $\mathrm{T}=15.15 \mu^{\prime \prime}$ sel. gold over nickel overall
- $T=16.30 \mu$ " sel. gold over nickel overall

3. (XX) Number of circuits

- Available in 2 through 40 circuits

4. (C) Pin dimensions

- $C=1 . H=4.00 \mathrm{~mm} ; D=7.50 \mathrm{~mm} . ; F=2.80 \mathrm{~mm}$.
- $C=$ 2. $H=2.80 \mathrm{~mm} . ; D=4.00 \mathrm{~mm} . ; F=2.80 \mathrm{~mm}$.
- $C=3 . H=4.00 \mathrm{~mm} . ; D=14.00 \mathrm{~mm} . ; F=2.50 \mathrm{~mm}$.
- $C=$ 4. $H=4.00 \mathrm{~mm}$; $D=6.00 \mathrm{~mm} . ; F=2.80 \mathrm{~mm}$.
- $C=$ 5. $H=10.00 \mathrm{~mm}$. $D=14.00 \mathrm{~mm} . ; F=2.80 \mathrm{~mm}$.
- $C=6 . H=2.00 \mathrm{~mm}$. $\mathrm{D}=3.45 \mathrm{~mm} . ; F=2.00 \mathrm{~mm}$.
- $C=7 . H=10.10 \mathrm{~mm}$. $; D=6.99 \mathrm{~mm} . ; F=2.03 \mathrm{~mm}$.
- $C=$ 8. $H=1.50 \mathrm{~mm}$. $D=8.00 \mathrm{~mm} . ; F=1.50 \mathrm{~mm}$.
- $\mathrm{C}=$ 9. $\mathrm{H}=2.80 \mathrm{~mm}$. $\mathrm{D}=11.50 \mathrm{~mm} . ; F=2.80 \mathrm{~mm}$.
- $C=10 . H=4.00 \mathrm{~mm}$. $D=4.00 \mathrm{~mm} . ; F=3.00 \mathrm{~mm}$.
- $C=11 . H=3.50 \mathrm{~mm}$; $D=6.00 \mathrm{~mm}$. $; F=3.50 \mathrm{~mm}$.
- $C=A . H=1.50 \mathrm{~mm} . ; D=3.00 \mathrm{~mm} . ; F=1.50 \mathrm{~mm}$.

Dimensions: (In mm.)
$\mathbf{A}=2.00 \times\left(X^{*}-1\right)$
$\mathbf{B}=2.00 \times\left(\mathrm{XX}^{*}\right)$

* XX (Number of circuits)

